Study of Structure and Interfacial Roughness of Extreme Ultraviolet (EUV) Multilayered Interferential Mirrors (MIMs) by Computer Processing of Electron Microscope Cross-Sections of MIMs

M.O. FLAISSIER, M. RASIGNI and G. RASIGNI
Département de Physique des Interactions Photons-Matière CaseEC1, Faculté des Sciences et Techniques de St Jérôme, 13397 Marseille Cedex 20, France
E-mail: M9103038@EDUC-003.U-3MRS.FR

ABSTRACT

This work bears upon the characterization of extreme ultraviolet- (EUV-)multilayered interferential mirrors (MIMs). It deals with developing a new method for determining the structure and the interface profiles of MIMs. This method is based on both transmission electron microscopy (TEM) and image processing.

Starting from the assumption that there is no transition layer, filtering and segmentation have allowed us to define the interface profiles for digitized cross-sectional TEM multilayers(1). This study has been performed on molybdenum/carbon and nickel/carbon multilayers. Interfacial roughness has been characterized by means of two statistical parameters, namely, the root mean square (rms) roughness height σ_h (2) and the autocorrelation length ℓ_c. The ratio σ_h/ℓ_c has also been calculated. Additionally, knowledge of interface profiles enables one to study more accurately the structural behavior of the stack, from the top down to the substrate.

References:
